Skip to content

Assembly

Body Composition

Author: Felipe Machado

Body composition refers to the amount, and distribution of tissue in the human body. The purpose of this section is to outline the instruments and techniques that have been used to assess body composition in patients with chronic respiratory disease, in the context of pulmonary rehabilitation. Although BMI and anthropometric measures can provide useful information in certain situations, these measures do not have the ability to discriminate between muscle (lean) or fat mass and therefore will not be explored in this section. Options for evaluating body composition include simple methods, such as bioelectrical impedance analysis (BIA) and more advance techniques, that require the use of relatively expensive equipment, such as whole-body Magnetic Resonance Imaging (MRI). We opted to describe the following five methods that have been used to assess body composition in chronic respiratory diseases:

When assessing a population with these techniques/instruments, one should note that different methods will provide different variables, that can be more (or less) appropriate to assess the amount and distribution of muscle (lean) mass or fat mass. In addition, certain methods can only provide estimates of body composition of the total body, while others may provide estimates for different anatomic regions (e.g. upper and lower limbs, trunk, android, gynoid). The choice of the method may depend on which specific variable is an independent predictor of clinical outcomes, as well as on the available resources. Prices of equipment and price per test vary according to country/ healthcare system. Below we describe these methods and additional information that may be useful to consider when assessing and interpreting body composition in patients with chronic respiratory disease.


Bioelectrical Impedance Analysis

Description
Name Bioelectrical Impedance Analysis
Abbreviation/AlternateBIA
DescriptionBIA equipment does not measure body composition directly, but estimates body composition based on whole-body electrical conductivity.
DeveloperCommercially available from different manufacturers.
AdministrationStandardized methodology must be observed to optimize measurements. Universally standardized protocols of BIA measurements have to be developed and implemented1.
Time to complete20-30 min
Main ParametersFat-free mass (index): FFM(I), fat mass index: FM(I), phase angle: PhA, body cell mass: BCM, extracellular mass: ECM, lean mass (index): LM(I), intracellular water: ICW, extracellular water: ECW, skeletal muscle mass (index): SMM(I).
Reference valuesAvailable from: Switzerland2, Sweden3, Germany4, United States5, China6, United Kingdom7, Italy8, Japan9, Spain10, Kenya11, Brazil12.
Test-retest/reproducibilityFFM (ICC: 0.99) over 7 weeks in COPD13.
ValidityCriterion validity compared to DXA:

FM (ICC: 0.92) and FFM (ICC: 0.87) in bronchiectasis14.

FFM mean difference = 0.72 [-5.68–7.20] kg in COPD13.

FM mean difference = -0.55 [-6.71–5.61] kg in COPD15.

LM mean difference = 0.26 [-5.96-6.49] kg in COPD15.

FFM (ICC: 0.98) and (ICC: 0.89) in young and adult cystic fibrosis patients16.

Criterion validity compared to CT:

FFM correlated with CT-scan assessed pectoralis muscle area (R2: 0.76) in COPD17.
Responsiveness to PRFFMI mean change = 0.1±0.6 kg/m² (8 weeks of PR) and 0.6±0.5 kg/m² (8 weeks of PR + nutritional support) in patients with severe COPD18.

FFM mean change = 1.0 kg (8 weeks of PR + diet) in COPD19.

FFMI mean change = 0.45 kg/m² (8 weeks of PR) in asthma20.

FFMI mean change = 0.4 kg/m² (12 weeks of PR + nutritional support) in bronchiectasis21.

FFM mean change = 0.62±1.50 kg (8 weeks of ET program) in cystic fibrosis patients22.
MIDNA in pulmonary diseases.
References
  1. Kyle, UG. et al. Clin Nutri. 2004;23:1430–53.
  2. Kyle, UG. et al. Nutrition. 2001;17:534-41.
  3. Dey, DK. et al. Eur J Clin Nutr. 2003;57:909-16.
  4. Bosy-Westphal, A. et al. JPEN. 2006;30:309-16.
  5. Xiao, J. et al. Clin Nutr. 2018;37:2284-7.
  6. Lu, Y. et al. Eur J Clin Nutr. 2012;66:1004-7.
  7. Franssen, FME. et al. J AM Med Dir Assoc. 2014;15:e1-6.
  8. Saragat, B. et al. Exp Gerontol. 2014;50:52-6.
  9. Seino, S. et al. PloS One. 2015;10:e0131975.
  10. Ibánez, ME. et al. Am J Hum Biol. 2015;27:871-6.
  11. Bastawrous, MC. et al. Eur J Clin Nutr. 2019;73:558-65.
  12. Matiello, R. et al. Front Nutr. 2022;9:912840.
  13. Steiner, MC. et al. Eur Respir J. 2002;19:626-31.
  14. Doña, E. et al. J Acad Nutr Diet. 2018;118:1464-73.
  15. Fonseca, FR. et al. J Bras Pneumol. 2018;44:315-20.
  16. Alicandro, G. et al. J Cyst Fibros. 2015;14:784-91.
  17. Mc Donald, M-LN. et al. Ann Am Thorac Soc. 2014;11:326-34
  18. Gurgun, A. et al. Respirology. 2013;18:495-500.
  19. Franssen, FME. et al. Chest. 2004;125:2021-8.
  20. Candemir, I. et al. WienKlin Wochenschr. 2017;129:655-64.
  21. Oliveira, G. et al. Clin Nutr. 2016;35:1015-22.
  22. Prévotat, A. et al. Respir Med Res. 2019;75:5-9.
Date of most recent changesDec 2022


Dual-Energy X-Ray Absorptiometry

Description
NameDual-energy X-ray absorptiometry
Abbreviation/Alternate NameDXA, DEXA
DescriptionQuantifies skeletal muscle mass, fat mass and bone mineral content by using X-rays with two different energies.
DeveloperCommercially available from different manufacturers.
AdministrationStandardized protocols involving subject presentation, subject positioning and scan analysis are available1.
Time to complete30-40 min
Main ParametersAppendicular lean mass (index): ALM(I), visceral adipose tissue: VAT, lean mass (index): LM(I), fat-free mass (index): FFM(I), fat mass index: FM(I).
Reference valuesAvailable from: China2, Italy3, Korea4, Brazil5, United States6, Mexico7, Australia8, Austria9, Vietnam10, Norway11.
Test-retest/ reproducibilityNA in pulmonary diseases.
ValidityCriterion compared to deuterium dilution:

FFM mean difference = 3.6 [-0.5–7.8] kg in male and 1.4 [-2.6–5.3] kg in female COPD patients12.
Responsiveness to PRFFM mean change = 0.8 kg (12 weeks of PR) in bronchiectasis13.

FFM mean change = 1.5 ± 2.6 kg (12 weeks of PR + nutritional support) in weight losing COPD14.

FM mean change = -4.6 kg (12 weeks of diet + resistance training) in obese COPD patients15.

FM mean change = -6.5 ± 4.0 kg (12 weeks of diet + exercise training) in overweight and obese asthmatics16.
MIDNA in pulmonary diseases.
References
  1. Schousboe, JT. et al. J Clin Densitom. 2013;16:455-66.
  2. Woo, J. et al. Arch Gerontol Geriat. 1998;26:23-32.
  3. Coin, A. et al. Clin Nutr. 2008;27:87-94.
  4. Hong, S. et al. J Korean Med Sci. 2011;26:1599-605.
  5. Souza, MGB. Et al. J Clin Densitom. 2013;16:360-7.
  6. Fan, B. et al. J Clin Densitom. 2014;17:344-77.
  7. Clark, P. et al. Calcif Tissue Int. 2016;99:462-71.
  8. Pasco, JA. et al. Calcif Tissue Int. 2019;104:475-9.
  9. Ofenheimer, A. et al. Eur J Clin Nutr. 2020;74:1181-91.
  10. Nguyen, HG. et al. Eur J Clin Nutr. 2021;75:1283-90.
  11. Lundblad, MW. et al. J Obes. 2021;2021:6634536.
  12. Engelen, MP. et al. Am J Clin Nutr. 1998;68:1298-303.
  13. Doña, E. et al. J Acad Nutr Diet. 2018;118:1464-73.
  14. Baldi, S. et al. Int J COPD. 2010;18:29-39.
  15. McDonald, V.M. et al. Respirology. 2016;21:875-82.
  16. Scott, H.A. et al. Clin Exp Allergy. 2013;43:36-49.
Date of most recent changesDec 2022


Ultrasound Measurement

Description
NameUltrasound measurement
Abbreviation/Alternate NameUS, ULT
DescriptionAn imaging technique that can determine thickness and cross-sectional areas of superficial tissue.
DeveloperCommercially available from different manufacturers.
AdministrationStandardization of US measurements are available for assessing muscle cross-sectional area and subcutaneous adipose tissue1,2.
Time to complete20-40 min
Main ParametersRectus femoris cross-sectional area (RF-CSA), quadriceps thickness (QT), diaphragm thickness, subcutaneous adipose tissue (SCAT), echo intensity.
Reference valuesAvailable from: France3, Germany4, Canada5, United States6, the Netherlands7, United Kingdom8.
Test-retest/ reproducibilityRF-CSA (ICC: 0.94) over 2-14 days in COPD9.

RF-CSA (ICC: 0.98) and QT (ICC: 0.98) repeat baseline scan in COPD10.

RF-CSA (Mean [SD] bias and 95% limits of agreement: 12 (43) mm2 and 272 to +96 mm2) over 2-4 weeks in COPD11.
Validity
  • Criterion compared to DXA
    :r=0.68 (RF-CSA) and r=0.63 (QT) in COPD10.
    r=0.68 (RF-CSA) and r=-0.61 (SCAT) in adult patients with cystic fibrosis12.
  • Criterion compared to CT scan:
    ICC=0.88 (RF-CSA) in COPD11.
    Criterium validity compared to BIA:
    r=0.58 (RF-CSA) in COPD13.
    r=0.57 (RF-CSA) and r=0.53 (QT) in COPD14.
    r=0.46 (RF-CSA) and r=0.57 (QT) in COPD15.
Responsiveness to PR

RF-CSA mean change = 21.8% and QT mean change = 12.1% (8 weeks of resistance training) in COPD10

Vastus lateralis muscle thickness mean change = 11.1% (12 weeks of PR) in COPD16.

RF-CSA mean change = 1.3 cm² (12 weeks of PR) in COPD17.

RF-CSA mean change = 0.6 cm² (12 sessions of exercise training) in COPD18.

MIDNA in pulmonary diseases.
References
  1. Perkisas, S. et al. Eur Geriatr Med. 2018;9:739-57.
  2. Störchle, P. et al. Ultrasound Med Biol. 2017;43:427-38.
  3. Boussuges, A. et al. Front Med. 2021;8:742703.
  4. Spiesshoefer, J. et al. Respiration. 2020;99:369-81.
  5. Abraham, A. et al. Muscle Nerve. 2020;61:234-8.
  6. Teyhen, DS. et al. J Ultrasound Med. 2012;31:1099-110.
  7. Arts, IM. et al. Muscle Nerve. 2010;41:32-41.
  8. Rankin, G. et al. Man Ther. 2005;10:108-15.
  9. Hammond, K. et al. J Rehabil Res Dev. 2014;51:1155-64.
  10. Menon, MK. et al. Respi Res. 2012;13:119.
  11. Seymour, JM. et al. Thorax. 2009;64:418-23.
  12. Sánchez-Torralvo, FJ. et al. Nutrients. 2022;14:3377.
  13. Ramírez-Fuentes, C. et al. Eur Geriatr Med. 2019;10:89-97.
  14. Nijholt, W. et al. Clin Nutr ESPEN. 2019;30:152-8.
  15. Mmaynard-Paquette, AC. et al. Int J COPD. 2020;15:79-88.
  16. Alcazar, J. et al. Scand J Med Sci Sports. 2019;29:1591-603.
  17. Boeselt, T. et al. Respiration. 2017;93:301-10.
  18. Greulich, T. et al. Respir Res. 2014;15:36.
Date of most recent changesDec 2022


Computed Tomography

Description
NameComputed Tomography
Abbreviation/Alternate NameCT scan
DescriptionCan provide important quantitative information on body composition through their high pictorial quality, spatial accuracy, site specificity and the ability to measure fat and muscle content by cross-sectional imaging.
DeveloperCommercially available from different manufacturers.
AdministrationA board-certified radiologist (preferably experienced in body composition analysis) should perform measurements.
Time to complete20-30 min
Main ParametersThigh muscle cross-sectional area (CSA), skeletal muscle area (SMA), skeletal muscle index (SMI), pectoralis muscle area (PMA), erector spinae muscles cross-sectional area (ESM-CSA), visceral adipose tissue (VAT), subcutaneous adipose tissue (SCAT).
Reference valuesAvailable for: Korea1, China2, Turkey3, United States4, the Netherlands5, Canada6.
Test-retest/reproducibilityReliability for muscle CSA was very good to excellent in 11 of 22 studies that reported this measure7.
PMA (ICC: 0.99) over 2 months in ILD8.
VAT, SCAT, psoas CSA (ICC: 0.99 for all) over 4 weeks in IPF patients9.
Validity
  • Criterion compared to DXA: r=0.77 (PMA) in ILD8.
  • Criterion compared to BIA:
    PMA can be used to predict FFM (Adjusted R2: 0.92) in patients with COPD10.
    r=0.69 (SMA) in patients with cystic fibrosis11.
Responsiveness to PRThigh muscle CSA mean change = 8% (12 weeks of PR) in COPD12.

Thigh muscle CSA mean change = 6% (12 weeks of NMES training) in severe COPD13.

Thigh muscle CSA mean change = 4.5% (12 weeks of PR) in COPD14.
MIDNA in pulmonary diseases.
References
  1. Kim, EH. et al. J Gerontol A Biol Sci Med Sci. 2021;76:265-71.
  2. Kong, M. et al. Clin Nutr. 2022;41:396-404.
  3. Bahat, G. et al. Clin Nutr. 2021;40:4360-5.
  4. Derstine, BA. et al. Sci Rep. 2018;8:11369.
  5. Van der Werf, A. et al. Eur J Clin Nutr. 2018;72:288-96.
  6. De Marco, D. et al. J Nutr Health Aging. 2022;26:243-6.
  7. Nicholson, JM. et al. Chron Respir Dis. 2022; Jan-Dec;19.
  8. Molgat-Seon, Y. et al. Respir Med. 2021;186:106539.
  9. McClellan, T. et al. Curr Probl Diagn Radiol. 2017;46:300-4.
  10. McDonald, M-LN. et al. Eur Respir J. 2017;14:1701134.
  11. Bryl, B. et al. J Thorac Imaging. 2021;36:W32-3.
  12. Bernard, S. et al. Am J Respir Crit Care Med. 1999;159:896-901.
  13. Vivodtzev, I. et al. Chest. 2012;141:716-25.14. Alcazar, J. et al. Scand J Med Sci Sports. 2019;29:1591-603.
Date of most recent changesDec 2022


Magnetic Resonance Imaging

Description
Name of Questionnaire Magnetic Resonance Imaging
Abbreviation/Alternate Name MRI
Description MRI uses the different magnetic properties of the nuclei of certain chemical elements (normally hydrogen in water and fat) in the cells to produce images of body composition.
Developer Commercially available from different manufacturers.
Administration A board-certified radiologist (preferably experienced in body composition analysis) should perform all measurements.
Time to complete 20-30 min
Main Parameters Thigh muscle cross-sectional area (CSA), total adipose tissue (TAT), visceral adipose tissue (VAT), subcutaneous adipose tissue (SCAT), lean mass index (LMI).
Reference values Available for: United States1, Switzerland2, Poland3.
Test-retest/ reproducibility NA in pulmonary diseases.
Validity Considered to be “gold standard” for non-invasive assessment of body composition. Has been validated and shown to provide accurate estimates of appendicular FFM and subcutaneous fat compared with cadaver sections4.
Responsiveness to PR Thigh muscle CSA mean change = 4.2% (12 weeks of resistance training) in COPD5.

Thigh muscle CSA mean change = 7±2% (8 weeks of PR) in COPD6.

Thigh muscle CSA mean change = 2.5±4.1 cm² (8 weeks of PR + nutritional support) in patients with severe COPD7.
MID NA in pulmonary diseases.
References
  1. Janssen, I. et al. J Appl Physiol. 2000;89:81-8.
  2. Ulbrich, EJ. et al. Magn Reson Med. 2018;79:449-58.
  3. Marunowski, K. et al. Front Nutr. 2021;8:757274.
  4. Mitsiopoulos, N. et al. J Appl Physiol. 1998;85:115-22.
  5. Kongsgaard, M. et al. Respir Med. 2004;98:1000-7.
  6. McKeough, ZJ. et al. Respir Med. 2006;100:1817-25.
  7. Gurgun, A. et al. Respirology. 2013;18:495-500.
Date of most recent changes Dec 2022